Dynamic oligopoly theory

Collusion - price coordination
Illegal in most countries

- Explicit collusion not feasible
- Legal exemptions

Recent EU cases

- Gas - approx. 1.1 billion Euros in fines (2009)
- Car glass - approx. 1.4 billion Euros (2008)
- Elevators - approx. 800 million Euros (2007)

Tacit collusion

Hard to detect - not many cases.
Repeated interaction

Theory of repeated games

Deviation from an agreement to set high prices has

- a short-term gain: increased profit today
- a long-term loss: deviation by the others later on

Tacit collusion occurs when
long-term loss > short-term gain

Model
Two firms, homogeneous good, $C(q)=c q$

Prices in period $t:\left(p_{1 t}, p_{2 t}\right)$
Profits in period $t: \pi^{1}\left(p_{1 t}, p_{2 t}\right), \pi^{2}\left(p_{1 t}, p_{2 t}\right)$
$\underline{\text { History at time } t: H_{t}=\left(p_{10}, p_{20}, \ldots, p_{1, t-1}, p_{2, t-1}\right), ~() ~}$

A firm's strategy is a rule that assigns a price to every possible history.

A subgame-perfect equilibrium is a pair of strategies that are in equilibrium after every possible history: Given one firm's strategy, for each possible history, the other firm's strategy maximizes the net present value of profits from then on.
T - number of periods
T finite: a unique equilibrium
period T : $p_{1 T}=p_{2 T}=c$, irrespective of H_{T}.
period $T-1$: the same and so on

T infinite (or indefinite)

At period τ, firm i maximizes

$$
\sum_{t=\tau}^{\infty} \delta^{t-\tau} \pi^{i}\left(p_{1 t}, p_{2 t}\right), \quad \delta=\frac{1}{1+r}
$$

The best response to (c, \ldots) is (c, \ldots).
But do we have other equilibria? Can $p>c$ be sustained in equilibrium?

Trigger strategies: If a firm deviates in period t, then both firms set $p=c$ from period $t+1$ until infinity.
[Optimal punishment schemes? Renegotiation-proofness?]

Monopoly price: $p^{m}=\arg \max (p-c) D(p)$
Monopoly profit: $\pi^{m}=\left(p^{m}-c\right) D\left(p^{m}\right)$

A trigger strategy for firm 1:

- Set $p_{10}=p^{m}$ in period 0
- In the periods thereafter,
- $p_{1 t}\left(H_{t}\right)=p^{m}$, if $H_{t}=\left(p^{m}, p^{m}, \ldots, p^{m}, p^{m}\right)$
- $p_{1 t}\left(H_{t}\right)=c$, otherwise

If a firm collaborates, it sets $p=p^{m}$ and earns $\pi^{m} / 2$ in every period.

The optimum deviation: $p^{m}-\varepsilon$, yielding $\approx \pi^{m}$ for one period.

An equilibrium in trigger strategies exists if:

$$
\begin{aligned}
& \frac{\pi^{m}}{2}\left(1+\delta+\delta^{2}+\ldots\right) \geq \pi^{m}+0+0+\ldots \\
& \Leftrightarrow \frac{1}{2} \frac{1}{1-\delta} \geq 1 \Leftrightarrow \delta \geq \frac{1}{2}
\end{aligned}
$$

The same argument applies to collusion on any price $p \in$ ($\left.c, p^{m}\right] . \Rightarrow$ Infinitely many equilibria.

The Folk Theorem.

Collusion when demand varies

Demand stochastic.

Periodic demand is
low: $D_{1}(p)$ with probability $1 / 2$
high: $D_{2}(p)$ with probability $1 / 2$
$D_{1}(p)<D_{2}(p), \forall p$.
The demand shocks are i.i.d.
Each firm sets its price after having observed demand.
What are the best collusive strategies for the two firms?
Trigger strategies: A deviation is followed by $p=c$ forever.
What are the best collusive prices? One price in lowdemand periods and one in high-demand periods: p_{1} and p_{2}.
$\pi_{s}(p)$ - total industry profit in state s when both firms set p.
With prices p_{1} and p_{2} in the two states, each firm's expected net present value is:

$$
\begin{aligned}
& V=\sum_{t=0}^{\infty} \delta^{t}\left[\frac{1}{2} \frac{D_{1}\left(p_{1}\right)}{2}\left(p_{1}-c\right)+\frac{1}{2} \frac{D_{2}\left(p_{2}\right)}{2}\left(p_{2}-c\right)\right] \\
& =\frac{1}{4(1-\delta)}\left[D_{1}\left(p_{1}\right)\left(p_{1}-c\right)+D_{2}\left(p_{2}\right)\left(p_{2}-c\right)\right] \\
& =\frac{\pi_{1}\left(p_{1}\right)+\pi_{2}\left(p_{2}\right)}{4(1-\delta)}
\end{aligned}
$$

The best possible collusive price in state s is:

$$
\begin{aligned}
& p_{s}^{m}=\arg \max (p-c) D_{s}(p), s=1,2 . \\
& \pi_{s}^{m}=\left(p_{s}^{m}-c\right) D_{s}\left(p_{s}^{m}\right), s=1,2 .
\end{aligned}
$$

If the firms can collude on these prices, then:

$$
V=\frac{\pi_{1}^{m}+\pi_{2}^{m}}{4(1-\delta)}
$$

A deviation in state s receives a gain equal to: π_{s}^{m}
For $\left(p_{1}{ }^{m}, p_{2}{ }^{m}\right)$ to be equilibrium prices, we must have:

$$
\pi_{s}^{m} \leq 1 / 2 \pi_{s}^{m}+\delta V \Leftrightarrow \pi_{s}^{m} \leq 2 \delta V
$$

The difficulty is state 2 (high-demand), since $\pi_{1}{ }^{m}<\pi_{2}{ }^{m}$.
The equilibrium condition becomes:

$$
\begin{aligned}
& \pi_{2}^{m} \leq 2 \delta \frac{\pi_{1}^{m}+\pi_{2}^{m}}{4(1-\delta)} \\
& \Leftrightarrow \delta \geq \frac{2}{3+\frac{\pi_{1}^{m}}{\pi_{2}^{m}}} \equiv \delta_{0} \\
& 0<\frac{\pi_{1}^{m}}{\pi_{2}^{m}}<1 \Rightarrow \frac{1}{2}<\delta_{0}<\frac{2}{3}
\end{aligned}
$$

But what if $\delta \in\left[\frac{1}{2}, \delta_{0}\right)$? Can we still find prices at which the firms can collude?

The problem is again state 2 . We need to set p_{2} so that

$$
\begin{aligned}
& \pi_{2}\left(p_{2}\right) \leq 2 \delta \frac{\pi_{1}^{m}+\pi_{2}\left(p_{2}\right)}{4(1-\delta)} \\
& \Rightarrow \pi_{2}\left(p_{2}\right)=\frac{\delta}{2-3 \delta} \pi_{1}^{m} \\
& \frac{1}{2} \leq \delta<\frac{2}{3} \Rightarrow \frac{\delta}{2-3 \delta} \geq 1 \Rightarrow \pi_{2} \geq \pi_{1}
\end{aligned}
$$

So: prices below monopoly price in high-demand state during boom. Could even be that $p_{2}<p_{1}$.

But is this a price war?
More realistic demand conditions:
Autocorrelation - business cycle.
Collusion most difficult to sustain just as the downturn starts.

Haltiwanger \& Harrington, RAND J Econ 1991
Kandori, Rev Econ Stud 1991

Bagwell \& Staiger, RAND J Econ 1997

[Exercise 6.4]

Empirical studies of collusion

- the railroad cartel
- Porter Bell J Econ 1983
- Ellison RAND J Econ 1994
- collusion among petrol stations
- Slade Rev Econ Stud 1992
- collusion in the soft-drink market: prices and advertising
- Gasmi, et al., J Econ \& Manag Strat 1992
- collusion in procurement auctions
- Porter \& Zona J Pol Econ 1993 (road construction)
- Pesendorfer Rev Econ Stud 2000 (school milk)

Infrequent interaction

Suppose the period length doubles.

$$
\delta \rightarrow \delta^{2}
$$

Collusion feasible if:

$$
\delta^{2} \geq \frac{1}{2} \Leftrightarrow \delta \geq \frac{1}{\sqrt{2}} \approx 0.71
$$

Multimarket contact

Market A: Frequent interaction, period length 1. Collusion if $\delta \geq 1 / 2$.

Market B: Infrequent interaction, period length 2. Collusion if $\delta^{2} \geq 1 / 2$.
(How could frequency vary across markets?)
What if both firms operate in both markets?
Can the firms obtain collusion in both markets even in cases where $\delta^{2}<1 / 2<\delta$?

A deviation is most profitable when both markets are open.
Deviation yields: $2 \pi^{m}$
Collusion yields:
[$\pi^{m} / 2$] every period, plus
[$\left.\tau^{m} / 2\right]$ every second period (starting today)
Collusion can be sustained if:

$$
\begin{aligned}
& \frac{\pi^{m}}{2}\left[1+\delta+\delta^{2}+\ldots\right]+\frac{\pi^{m}}{2}\left[1+\delta^{2}+\delta^{4}+\ldots\right] \geq 2 \pi^{m} \\
& \Leftrightarrow \frac{1}{2} \frac{1}{1-\delta}+\frac{1}{2} \frac{1}{1-\delta^{2}} \geq 2 \\
& \Leftrightarrow 4 \delta^{2}+\delta-2 \geq 0 \Leftrightarrow \delta \geq \frac{\sqrt{33}-1}{8} \approx 0.59
\end{aligned}
$$

